Artificial Intelligence in Career Guidance: Current Issues and Future Prospects

Authors

DOI:

https://doi.org/10.63034/esr-357

Keywords:

artificial intelligence, career guidance, career, artificial intelligence methods, algorithms, recommendation systems, data processing

Abstract

The emergence of new technologies and the acceleration of automation processes are leading to the disappearance of many professions and the emergence of new ones. This situation requires future specialists to be prepared for changes and to choose professions that can adapt to modern demands. Therefore, the quality of career guidance services is crucial to help young people plan their educational trajectories correctly and acquire the skills needed in the labor market. This article analyzes the possibilities of using artificial intelligence in career guidance services. AI methods such as machine learning, neural networks, data and social media analysis, natural language processing, and chatbots are discussed for their potential to improve the accuracy and personalization of recommendations. Attention is drawn to issues such as access to technology, data confidentiality, and insufficient integration with the labor market. It has been determined that artificial intelligence holds great promise for predicting demand for professions, personalizing educational trajectories, and implementing adaptive career guidance systems. Despite the high potential of artificial intelligence to transform career guidance, the challenges faced are also reviewed. In the future, the research findings could be used to develop innovative tools and services in this field.

References

ҚР Президенті Тоқаев Қ. (2024). Халыққа жолдауы. ҚР Парламенті Мәжілісінің сайты. Retrieved from www.parlam.kz

ҚР Парламенті Мәжілісінің сайтының жаңалықтар парақшасынан алынды. (2024). Retrieved from senate.parlam.kz

Сайттың жаңалықтар тобынан алынды. (2024). Retrieved from https://total.kz/ru/news/zhizn/

Зинина, С. М. (2020). Цифровые технологии как средство профессионального выбора: будущее и настоящее. Актуальные проблемы педагогики и психологии, 1(3), 38–49.

Mukabe, N., Hashiyana, V., Limbo, A., & Hauwanga, A. (2021). Career counseling chatbot on Facebook Messenger using AI. Proceedings of the International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 65-73. https://doi.org/10.1145/3484824.3484875 DOI: https://doi.org/10.1145/3484824.3484875

Cheng, Y., & Liang, Y. S. (2023). The development of artificial intelligence in career initiation education and implications for China. European Journal of Artificial Intelligence, 2(4). https://doi.org/10.24018/ejai.2023.2.4.32 DOI: https://doi.org/10.24018/ejai.2023.2.4.32

Mavuso, N. C., Jere, N., & vanGreunen, D. (2023). A customized artificial intelligence-based career choice recommender system for a rural university. African Conference on Information Systems and Technology Proceedings.

Thelijjagoda, S., & Gunatilake, P. (2023). AI-powered smart and personalized education platform. 2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 1-7. https://doi.org/10.1109/ICSES60034.2023.10465439 DOI: https://doi.org/10.1109/ICSES60034.2023.10465439

Halkiopoulos, C., & Gkintoni, E. (2023). Leveraging AI in e-learning: Personalized learning and adaptive assessment through cognitive neuropsychology—A systematic analysis. Electronics, 13(18). https://doi.org/10.3390/electronics13183762 DOI: https://doi.org/10.3390/electronics13183762

Зубкова, Т. М., & Тагирова, Л. Ф. (2021). Применение модели нейронных сетей для поддержки принятия решения абитуриента по выбору специальности. Программные продукты и системы, 34(2), 365–373. https://doi.org/10.15827/0236-235X.134.365-373 DOI: https://doi.org/10.15827/0236-235X.134.365-373

Published

2025-01-26

How to Cite

Abraimova , D., & Beldeubayeva, Z. (2025). Artificial Intelligence in Career Guidance: Current Issues and Future Prospects. Eurasian Science Review An International Peer-Reviewed Multidisciplinary Journal, 2(Special Issue), 1660–1670. https://doi.org/10.63034/esr-357